Ir arriba
Información del artículo

Cluster analysis of seriously injured occupants in motor vehicle crashes

R. Suárez del Fueyo, M. Junge, F.J. López-Valdés, H.C. Gabler, L. Woerner, S. Hiermaier

Accident Analysis & Prevention Vol. 151, pp. 105787-1 - 105787-12

Resumen:

Permanent monitoring of real-world crashes is important to identify injury patterns and injury mechanisms that still occur in the field despite existing regulations and consumer testing programs. This study investigates current injury patterns at the MAIS 3+ level in the accident environment without limiting the impact direction. The approach consisted of applying unsupervised clustering algorithms to NASS-CDS crash data in order to classify seriously injured, belted occupants into clusters based on injured body regions, biomechanical characteristics and crash severity. Injury patterns in each cluster were analyzed and associated with other characteristics of the crash, such as the collision configuration. The groups of seriously injured occupants found in this research contain a large amount of information and research possibilities. The resulting clusters represent new opportunities for vehicle safety, which have been highlighted in this study.


Índice de impacto JCR y cuartil WoS: 6,376 - Q1 (2021); 5,700 - Q1 (2023)

Referencia DOI: DOI icon https://doi.org/10.1016/j.aap.2020.105787

Publicado en papel: Marzo 2021.

Publicado on-line: Enero 2021.



Cita:
R. Suárez del Fueyo, M. Junge, F.J. López-Valdés, H.C. Gabler, L. Woerner, S. Hiermaier, Cluster analysis of seriously injured occupants in motor vehicle crashes. Accident Analysis & Prevention. Vol. 151, pp. 105787-1 - 105787-12, Marzo 2021. [Online: Enero 2021]


    Líneas de investigación:
  • Biomecánica
  • Movilidad sostenible y vehículos eléctricos

pdf Previsualizar
pdf Solicitar el artículo completo a los autores